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SUMMARY« A procedure is developed for generating variational 
statements suitable for obtaining approximate solutions to boundary- 
initial value problems. The essence of the procedure is to introduce 
all boundary and initial conditions into the variational statement as 
natural boundary conditions. This is accomplished through the use of 
Lagrange multipliers, in which all initial condition terms as well as 
boundary terms are determined analytically. The result is a varia- 
tional statement in which completely unconstrained trial functions may 
be assumed as a basis for an approximate solution.  Several applications 
are given, including the response of a beam subject to a moving con- 
centrated mass loading. 

I.  INTRODUCTION. Theorems establishing the correspondence between 
certain boundary value problems and the calculus of variations appear 
in detail in the treatise of Collatz [1]. More recently, Rund [2] has 
produced more general theorems through the use of the transversality 
conditions from which the theorems of Collatz emerge as special cases. 
Neither of these works, however, attempts to establish variational 
statements for the solution of initial value problems, which is the 
subject of the work herein. 

Recent work by Bailey [3,4] has shown that Hamilton's law of vary- 
ing action is capable of yielding approximate solutions to initial and 
boundary-initial value problems. The variational form used by Bailey 
allows the function and its derivative to vary at the upper limit of 
integration of the time interval.  At the lower limit, these quantities 
are constrained to satisfy specified initial conditions.  It appears 
that a more general method would free the variations at the lower limit 
as well, thus broadening the class of admissible trial functions. 
Although much has been written [5] on the subject of removal of con- 
straints on the boundary variations, the applications usually deal with 
elliptic rather than hyperbolic systems, where it is customary to intro- 
duce the constraints of the problem as natural boundary conditions. The 
constraints themselves thus become subject to approximation through the 



variational process. Convergence, when achieved, tends toward a solu- 
tion satisfying these constraint conditions. When all of the constraints 
of the problem are introduced in this manner, the result is a completely- 
unconstrained variational statement, whereby the trial functions need 
not identically satisfy any boundary conditions. As the use of Lagrange 
multipliers in freeing boundary variations of constraints is by now 
classical, this work is fundamentally concerned with extending the 
method to remove constraining time conditionso 

The Lagrange multiplier procedure adds each constraint as a zero 
times a Lagrange multiplier to the previously unconstrained variational 
statement.  In this way, each constraint is made to appear as a natural 
boundary condition and, in some cases where a functional exists (i.e., 
variational "principles"), it may be modified to include these terms. 
The multipliers can usually be identified in terms of values of the 
function and its derivatives on the bounding surface of the domain of 
integration. The act of freeing the boundary variations will not result 
in the loss of a variational "principle" provided the constraint is 
holonomic, i.e., a functional will still exist though modified by addi- 
tive products of the Lagrange multipliers times the individual constraint 
relations. On the other hand, should any of the constraints be non- 
holonomic, the existence of a functional is denied and one has in its 
place a less elegant variational "statement" which may nevertheless 
provide a basis for an approximate solution to the problem at hand. 

In spite of the apparent generality of the Lagrange multiplier 
method, its application to Hamilton's principle (a constrained varia- 
tional principle) for the solution of initial value problems is not 
obvious.  Indeed, Bailey found it fruitful to employ Hamilton's law 
of varying action in which no functional exists. Once the quest of a 
functional is abandoned, however, unconstrained variational formula- 
tions for initial value problems are immediately possible, as was 
first shown by Tiersten [6]„ Since the purpose of Tiersten's work at 
the time did not involve explicit solutions in the time domain, the 
success of his method for achieving solutions to initial value prob- 
lems was never tested„  Further, Tiersten's procedure requires a 
special introduction of one of the initial conditions into the varia- 
tional statement, making incomplete use of the Lagrange multiplier 
method in the time domain. Solutions to the free oscillator, the two- 
dimensional wave equation, and the motion of a beam to a moving con- 
centrated mass are offered as evidence of success of the method. 

The variational form presented herein does not produce a functional. 
Gurtin [7] and later Wu [8], however, have successfully formulated ini- 
tial and boundary-initial value problems using unconstrained varia- 
tional principles in which a functional is indeed produced. Wu's treat- 
ment requires introducing the adjoint variable and replacing the given 



boundary and initial conditions with a set of artificial conditions 
containing a parameter that eventually is allowed to become very large 
numerically.  Using finite element approximations, Wu was able to 
achieve excellent agreement with the exact solutions of several partial 
differential equations in one and two dimensions. Gurtin's procedure, 
on the other hand, combines the initial conditions and field equations 
into a single integro-differential equation which is then regurgitated 
as the Euler-Lagrange equation when the variation of a constructed 
functional is made to vanish. 

II.  VAR1ATI0NAL STATEMENTS AND LAGRANGE MULTIPLIERS.  Unless the 
variational quantities appearing in a variational statement or principle 
are completely arbitrary, the formulation is said to be 'constrained'. 
The principle of virtual work in its conventional form is one example 
of a constrained variational principle; i.e„, 

0=6/ U(e)dV - / Ki6uidV - / Fluids (1) 
V V Sf 

where U(£) is the potential energy density of an elastic volume, V. 
The Kj[ are body forces per unit volume and the u^ are the unknown 
displacement functions„ -A bar denotes prescribed surface quantities, 
and 

where n£ is the outward directed normal to any surface» a^ represents 
the stress tensor. 

Implicit in Eq. (1) is the constraint 

ui = ui on Su' ^ 

i.e., the displacement functions must be those prescribed on the bound- 
ary surface Su.  Further, Su and Sf do not overlap and together comprise 
the complete boundary of the volume, V. 

If Eq. (1) is used as a basis for approximating a solution to a 
problem in elastostatics - e.g., via the Rayleigh-Ritz method - the 
shape functions employed in the approximation must each identically 
satisfy the constraint equation (3) a priori. This requirement may be 
removed by using Lagrange multipliers to introduce the constraint 
explicitly in Eq. (1) which then becomes 



0 = 6{/ U(e)dV + /  \.Cu.-u.)dS} - / K.6u.dV - / F-fiu-dS  (4a) 
V        S V & 

u f 

= 6 f U(e)dV + /  {6X.Cu.-u.) + X.6u.}dS - / K.6u.dV - /  F.fiu.dS 
V        S    1    '    ^        1   1 V ^ i    Sc " i 

u F 

For a Hookean material 

6/ U(e)dV = / a.-fie.^V 
V V   J  J 

= / .(aij6ui)JdV-/ a^^Su.dV 

dV 

Thus, 

= /  F.fiu.dS + f  F.6u.dS - / a.. .6u. 
J
s  i i   Js  1 1   V ^ 1 

f u 

/  F.fiu.dS - / (a.. .+K.)6u.dV + f  [X.6u.+dX.(u.-u.)]dS 
■g  ii    Jy      ij,]    iJ    i J

s  
L i i  i^ i iJJ 

u u 

+ /  (Fi-Fi)6u.dS = 0 . (4b) 
Sf 

Now the 6ui in Eq. (1) or Eq. (4b) are not all arbitrary because of the 
constraints in Eq„ (3)„  But if the Lagrange multipliers, X^, are 
defined as -Fj on Su, the coefficients of all 6ui quantities on Su 
vanish, and hence the 6u^ may be viewed as arbitrary. This is the 
essence of the Lagrange multiplier method.  It is important to note 
that the constraints involved in this exercise are holonomic and the 
surfaces Su and S£ do not overlap. 

Thus, substituting X^  = -F^ on Su, Eq. (4a) becomes an uncon- 
strained principle of virtual work: 

6{/ U(e)dV - /  F1Cui-ui)dS - / K.u-dV - J  F.u-dS} = 0 . (4c) 
V Su V Sf 

If the Rayleigh-Ritz method is used with Eq. (4c), the shape functions 
assumed no longer need satisfy identically the constraint relations in 
Eq. (3). 



Another example of a constrained variational principle is Hamilton's 
Principle [6] 

tl 
6/  dtCf  (T-U)dV + /  F,uvdS} = 0 . (5) 

t     V S Z0 V ^f 

In analogy with the previous treatment of the virtual work principle one 
notes that instead of simply 

/ U(e)dV , 
V 

we have t 
/  /  (T-U)dVdt 

^ V 

where T is the kinetic energy density. Thus, in addition to the term, 

3U Fk = H 
9uk,£ 

one can expect a similar term from T, i.e., 

Pk = ±iL=±puk 
9uk 

where p is the mass density and the ± denotes unit normals to the 'time' 
surfaces t = tg and t = t,. 

The constraint equations are 

t^ = ^      on Su (6) 

and 6ui =0  at  t = tg . 

The constraint at tg can be satisfied by specifying u^ at tg but this 
cannot be done for the later time t^ in the ordinary initial value 
problem. Thus, Hamilton's Principle contains at least one non-holo- 
nomic constraint. 

Further, one notes that both momentum and displacement are 
prescribed on the same surface tg. Thus, the quantity 

KSu-kh0 > unlike h6uk]sf > 
does not appear in Hamilton's Principle and analogous definitions for 
the X^ are therefore not available. While the pressure of non-holo- 
nomic constraints can be handled by a more general Lagrange multiplier 
procedure [9], the overlapping of surfaces on which displacement and 



momentum are specified proves insurmountable in applying the Lagrange 
multiplier technique„ One concludes, therefore, that straightforward 
use of the Lagrange multiplier technique to completely unconstrain 
Hamilton's Principle in the time domain is not possible. 

111.  INITIAL VALUE PROBLEMS AND ADJOINT VARIATIONAL PRINCIPLES. 
The work of the previous section demonstrates that there is no diffi- 
culty in using the Lagrange multiplier method in the space domain 
where the governing equations are elliptic but only in the time domain 
where hyperbolic systems are encountered-  In this section it is shown 
that hyperbolic systems can also be treated by the multiplier method 
provided consideration is given not only to the physical system but 
also its adjoint. This is most easily shown by example. 

Consider the following initial value problem: 

u" + u1 + u = 0 ;  0<x<l 

u(0) = u'(0) = 0 • (7) 

The adjoint to the system Eq,, (7) is 

v" - v1 + v = 0 

v(l) = v'(l) = 0 • (8) 

An adjoint variational principle may be found by multiplying Eq. (7) 
by the adjoint variable v and integrating over the domain. Thus: 

1 £      1 
/ v(u"+u,+u)dx - [vu1]  = I E J  (uv+u'v-u'v^dx •     (9) 
0 0      0 

If the variation of I is made to vanish 

1   1 1 
61 = 0 = [vfiu-u'fiv-v'au]  + /  (V'+u'+ujSvdx + / (v,,-v,+v)6udx.  (10a) 

0   0 0 

Now if v(l) and u(0) are specified a priori, 

i.Oo,      v(l) = 0 
(10b) 

u(0) = 0 



then,     . ,     , 
1 1 

61 = 0 = u'(0)6v(0) - v'(l)5u(l) + / L(u)5vdx + / L*(v)6udx. (10c) 
0 0 

Since only 6v(l) and 6u(0) are constrained to vanish in Eq. (10c), the 
rest of the variations are independent and arbitrary.  Thus in addition 
to Eq. (10b) we have 

L(u) E u" + u' + u = 0 

L*(v) E v" - v1 + v = 0 (lOd) 

u'tO) = 0 

v'Ci] = o . 

Equations (10b) and (lOd) comprise the entire system of equations for 
the adjoint and physical systems. As it stands, Eq. (10c) is a con- 
strained adjoint variational principle since the constraints (Eq. (10b)) 
are imposed a priori. The fact that Eq. (10c) does not, by itself, 
yield all of the initial conditions illustrates its constrained char- 
acter. However, adding.the constraints Eq. (10b) to this variational 
statement via the Lagrange multiplier method will free the principle of 
constraints and all of the initial conditions as well as the differ- 
ential equations are then regurgitated. Thus 

1 
6{/ (uv+u'v-v'u^dx + X u(0) + X v(l)} = 0 

0 1 Z 

11 1 
= - u^v]  + /  (u"+u,+u)6vdx + (v-v'^u] 

0   0 0 
1 

+ /  (v"-v'+v)6udx + X16u(0) + u(0)6X1 + X26v(l) + v(l)5X2.  (11) 

6u(0) and 6v(l) may be viewed as arbitrary if 

X1 E v(0) - v'(0) 

X2 E u'(l) . (12) 



Substituting the definitions (Equations (12)) into equation (11) and 
integrating by parts: 

1 1 
/ L(u)5vdx + / L*(v)6udx + u'(0)6v(0) 
0 0 

+ (v(l)-vt(l))6u(l) - u(0)6v,(0) + v(l)6u,(l) = 0      (13) 

Since all variations are now viewed as arbitrary, 

L(u) E u" + u1 + u = 0 ;  0<x<l 

u(0) = 0 

u^O) = 0 (14a) 

L(v) E v" - v1 + v = 0 ;  0<x<l 

v(l) = 0 

v(l) - v'Cl) = -v'CD = 0. (14b) 

Thus under the definitions (Equations (12)), equation (11) becomes an 
unconstrained adjoint variational principle which corresponds to the 
physical system together with its adjoint, 

1 
i.e.,     §{j     (uv+u'v-v'u^dx + (v(0)-v'(0))u(0) + u,(l)v(l)} = 0 (15) 

0 
In view of the linearity of the systems considered and the arbitrariness 
of 6u and 6v, the portion of equation (13) which yields the u-system may 
be considered separately from that which gives the v-system, 

1 
i.e.,    / (u'^u'+u^dx + u,(0)6v(0) - u(0)6v,(0) = 0.   (16) 

0 

Further, there is no reason why the variations on v cannot be those 
performed on u. Thi^s, 

1 
/  (u'^u'+ulfiudx + ul(0)6u(0) - u(0)6v,(0) = 0 .       (17) 
0 



One notes in passing that equation (17), unlike equation (15) is not of 
the form 61 = 0, that is, no functional exists unless the adjoint system 
is included.  Thus equation (17) might be more properly called a varia- 
tional 'statement' as opposed to a 'principle'. 

The Lagrange multiplier technique may be applied to the more general 
equations governing the motion of a linearly elastic solid. For example, 
consider the following system: 

3Uk    k   Ik,I 

uk - uk(t) = 0 on Su 

" nl0lk  + fk = on Sf 
Uk " VV = 0  :  t = ^ 

..    . \  " vk = 0 ; t = t0 . ^ ;; (18) 

The result of applying the Lagrange multiplier technique to this system 
and its adjoint is the following variational statement 

t, 
0 - / 1 [/ -SLdV + /  F6u dS + /  6{na (uv-u,)}dS]dt 

t     V S      «      S      X- X,K  K  K 
0 N u      ■;■■■■!•.•. .r 

+ / dV{-uk(t1)5uk(t1) + vk6uk(t0) ... 
V i 

+ [uk(t0) - uk(t0)]}p(Suk(t0) (19) 
j 

where L is the Lagrange density 

L = l/2pukuk - IKu^u^^xp. 

Equation (19) and the result obtained by Tiersten [6] are identical 
except that in the interest of simplicity, no material surface of 
discontinuity has been considered in Eq. (19).  It is to be noted that 
all variations are unconstrained so that the trial functions used in 
seeking an approximate solution need not satisfy any boundary of ini- 
tial conditions a priori.  If trial functions can be chosen that do 
satisfy some of the boundary constraints beforehand, convergence will 
usually be more rapid« 



IV.  APPLICATIONS. 

Example 1:  Wave Equation 

S^-p^=0 
3x2    3t2 

U(0,t) = g0(t),   u(^,t) ■ g^t) 

u(x,0) = h0(x),   u(x,0) = h^x) (20) 

Thus, 

U = I/2S(u,)z    F = 0 

a = -BL=s • 
3u'   u 

Substituting the boundary conditions and the expressions for U and a 
into Eq. (19) results in the following variational statement: 

t, % 
0 = / ■1{/  (a^u-u'eu^dx + [u(Jl,t) 

0  0 

-g^tOlfiu't^t) - [u(0,t) - g0(t)]6u'(0,t) + u'(J,Jt)6u(£,t) 

i 
-u,(0,t)6u(0,t)}dt + / a2[-u(x,t )6u(x,t ) 

0 

+h1(x)5u(x,0) + [u(x,0) - h0(x)]6u(x,0)]dx (21) 

where a2 = p/S. A matrix formulation of Eq. (21) is achieved by 
substituting the approximation 

NxN 
u(x,t) = I    a (x,t)c 

j = l ■'     -' 

as in the Ritz procedure but without any constraint requirements on 
the a.: set a priori. The result is a set of algebraic equations of 
the form 

10 



NxN 
I    k..c. = r.   i=l,NxN (22) 

j = l  J J 

for the determination of the constants Cj"(Jl,tO 
Tables 1 and 2 for the case 

Results are given in 

g0 = gi = hi = 0'  ho^x^ = sinirx/il; a = 2  . 
The shape functions aj(x,t) are taken to be products of polynomials in 
x and t.  Good convergence is obtained for N = 8. As expected, Tables 
1 and 2 show a decline in accuracy as the interval of integration is 
doubled. 

Example 2:  Free Oscillator-Particle Mechanics 

ii + co2u = 0, u(0) = u0, u(0) = v0 (23) 

The variational formulation for this problem is 

tl 
/  (u6u-a)2u6u)dt - u(t1)6u(t1) + vn6u(0) 
0    .    . 

+ u(0)6u(0) - u06u(0) = 0 . (24) 

Table 3 gives the results for the case UQ = 0, VQ = OJ = 2TT, and ti = 1, 
The assumed shape functions are polynomials in the time variable. A 
polynomial of order eight again gives good convergence. 

Example 3: Response of a Beam to a Moving Mass 

A concentrated mass is assumed to move at constant velocity v 
along the length of a uniform Euler beam, simply supported at each of 
its ends and having zero displacement and velocity at time t = 0. 
Under suitable definitions for k and m, the representative equations 
may be written [10] 

ylv + ky + f(x,t) = 0 

y(0,t) = y"(0,t) = y(l,t) = y"(l,t) = 0 

y(x,0) = y(x,0) = 0 . (25) 

11 



The function £(x,t) consists of a sum of inertial terms 

f(x,t) = m(y+2vy,+g"v2yn)6(x-vt) 

where g denotes the gravitational constant and 6 is the Dirac function. 
The appropriate variational equation is 

tl  1 

/  / (y"6y"-ky6y+f(x,t)6y)dxdt 
0  0 

1 
+k/ {/(x^tJSyCx.tO - y(x,0)6y(x,0)}dx = 0 .      (26) 

0 

A matrix approximation to Eq. (26) is obtained as in the first example, 
again using products of polynomials through order eight. The results 
are shown in Figure 1 as a comparison with values scaled from the exper- 
imental curves of Ayre, Jacobsen, and Hsu [11] for the case v = v*/4, 
v* being the lowest velocity to produce resonance when the load is a 
moving weight only. The magnitude assigned to the moving mass is 25% 
of the total mass of the beam of length L.  The displacements have been 
normalized with respect to the maximum deflection produced if the 
weight was applied statically at midspan. This problem has also been 
treated previously by the author [10], using a conventional finite 
element method resulting in a set of differential equations in time. 
The numerical integration of these equations appeared to require a 
considerably longer computation time. 

V. CONCLUSIONS. The unconstrained variational statement first 
developed and used by Tiersten for the solution of field displacements 
within a body containing a surface of discontinuity can indeed yield 
solutions to boundary-initial value problems.  Further, the variational 
statement from which such solutions are possible can be formally con- 
structed by the Lagrange multiplier method if the adjoint system is 
also considered. 

12 
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Table 1    Solution lo wave c.juation 0 < JT< 2.0; 0 < r s 2.0 (exact values In parentheses) 

l/x 0.0 0.4 0.8 1.0 1.2 1.6 2.0 

0.0 .000060 
(.000000) 

.587782 
(.588785) 

.951066 
(.951057) 

1.000000 
(1.000000) 

.951063 
(.951057) 

.587785 
(.587785) 

.000056 
(.000000) 

0.4 .000014 
(.000000) 

.475532 
(.475528) 

.769422 
(.769421) 

.809006 
(.809017) 

.769421 
(.769421) 

.475533 
(.475528) 

.000013 
(.000000) 

0.8 -.000001 
(.000000) 

.181636 
(.181636) 

.293889 
(.293893) 

.309010 
(.309017) 

.293890 

(.293893) 

.181635 
(.181636) 

.000001 
(.000000) 

1.0 - .000003 
(.000000) 

.000000 
(.000000) 

- .000002 
(.000000) 

.000001 
(.000000) 

-.000001 
(.000000) 

- .000001 
(.000000) 

- .000002 
(.000000) 

1.2 - .000000 
(.000000) 

-.181637 

(-.181636) 

-.293889 

( - .293893) 

- .309010 
(-.309017) 

- .293890 
( - .293893) 

-.181636 
(-.181636) 

- .000001 
( - .000000) 

1.6 -.000013 
(.000000) 

-.475531 
(-.475528) 

- .769420 
(-.769421) 

- .809006 
(.- .809017) 

- .769420 
(-.769421) 

-.475531 
(-.475528) 

-.000012 
( - .000000) 

2.0 - .000036 
(.000000) 

-.587786 

(-.587785) 

-.951055 
(-.951057) 

- .999986 
( - 1.000000) 

-.951056 
(-.951057) 

-.587785 
(-.587785) 

- .000033 
( - .000000) 

Table 2    Solution lo wave equation 0< jr < 2.0; 0 < f s 4.0 (exact values in parentbescs) 

l/x 0.0 0.4 0.8 1.0 1.2 1.6 2.0 

0.0 .000037 

(.000000) 

.595863 
(.587785) 

.964161 
(.951057) 

1.013774 
(1.000000) 

.964161 
(.951057) 

.595867 

(.587785) 

.000031 
(,000000) 

0.8 .000008 
(.000000) 

. 183947 
(.181636) 

.297637 
(.293893) 

.312952 
(.309017) 

.297638 
(.293893) 

.183948 
(.181636) 

.000007 

(.000000) 

1.6 -.000014 
(.000000) 

- .477206 
( - .475528) 

-.772139 
(-.769421) 

- .811866 
(-.809017) 

- .772139 
(-.769421) 

- .477207 
( - .475528) 

.000012 
( .000000) 

2.0 -.000013 
(.000000) 

- .587942 
( -.587785) 

-.951308 
(-.951057) 

- 1.000253 
( - 1.000000) 

-.951309 
(-.951057) 

- .587943 
( - .587785) 

- .00(H) 13 
( - .000000) 

2,4 .000006 
(.000000) 

- .474475 
(- .475528) 

- .767707 
(-.769421) 

- .807204 
(-.809017) 

- .767707 
(-.769421) 

- .474475 
(-.475528) 

- .000007 
( - .000000) 

3.2 -.000001 

(.000060) 

.181191 
(.181636) 

.293165 
(.293893) 

.308247 
(.309017) 

.293166 
(.293893) 

.181191 
(.181636) 

.000001 
(.000000) 

4.0 .000002 
(.000000) 

.587756 
(.587785) 

.951014 
(.951057) 

.999945 
(1.000000) 

.951014 
(.951057) 

.587755 
(.587785) 

.000005 
(.000000) 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
OiS 
0.9 
1.0 

Table 3    Solution to free oscillator problem 0<r</, = 1.0 

Computed solution 

.00305 

.58656 

.95218 

.95159 

.58670 
- .00058 
-.58704 

- .95058 
-.95147 

-.58775 
- .00001 

Exact solution 

0.00000 
.58779 
.95106 
.95106 
.58779 

0.00000 
-.58779 
-.95106 
-.95106 
- .58779 
0.00000 

r 
1.0 '  0.       .2 3 .6        .8 

VT/L 
Fig. 1    Displacement of beam at location of moving mass. 
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